有限温度下腔光机械系统中 N 个二能级原子 的相变和热力学性质*

刘妮† 黄珊 李军奇 梁九卿

(山西大学理论物理研究所,量子光学与光量子器件国家重点实验室,太原 030006)

(2019年3月12日收到; 2019年8月6日收到修改稿)

研究了含有非线性相互作用的腔机械系统中 N个二能级原子在有限温度下的相变和相关的热力学性 质,采用虚时路径积分方法推导出系统的配分函数,求得系统的有效作用量.通过对有效作用量进行变分得到 系统的热力学平衡方程和原子布居数期待值的解析表达式,重点研究了原子-场耦合强度、非线性原子-光相 互作用、非线性声子-光子相互作用等影响下系统的相变,发现除了会发生由正常相到超辐射相的二阶相变 外,还会出现正常相和亚稳的超辐射态共存的现象,同时会发现三相(正常相、超辐射相、亚稳的超辐射态)共 存点.有限温度的升高,会使正常相到超辐射相的二阶相变点向原子-场耦合强度增大的方向移动;当非线性 原子-光相互作用(正或负)增强时,相变点会向原子-场耦合强度弱的方向移动;声子-光子相互作用会导致出 现超辐射不稳定态;有限温度下,在正常相区熵为定值,而在超辐射相区熵随原子-场耦合强度的增强迅速递 减为零.

关键词:有限温度,相变,虚时路径积分,非线性声子-光子相互作用 **PACS:** 37.30.+i, 42.50.Pq **DOI:** 10.7498/aps.68.20190347

1 引 言

腔光机械系统在探索经典系统和量子力学系 统之间的界限发挥了重要作用^[1].值得一提的是: 该混合系统中,光腔模产生的光子和纳米机械振子 产生的声子之间的新型非线性相互作用是通过辐 射压诱导产生^[2,3].目前,这种非线性声子-光子相 互作用是实现高精度测量和量子信息处理的一种 重要资源^[4].随着电磁自由度和机械自由度相干耦 合技术的进步,实验上实现了一种新的前沿量子领 域:腔光机械^[5].光机械腔内可实现许多有趣的物 理现象,例如光学冷却^[6]、光学区域中的双稳态和 光学非线性^[7]以及压缩^[5]等.目前实验上将玻色- 爰因斯坦凝聚体 (BEC) 与超精细光腔进行耦合, 并且在横向注入了泵浦光^[8],这种将超冷原子系综 与高精细腔模相互作用系统是典型的腔量子电动 力学系统,它在研究量子光学和冷原子物理领域具 有重要的参考价值^[9,10].基于此,实验上还将 BEC 囚禁在光机械腔中,这对于探索奇异的量子现象是 非常有意义的.

量子相变是零温下量子多体系统相互作用时 发生的定性修正,是耦合强度或其他外部参数的变 化引起的系统量子涨落^[11].Dicke模型的量子相变 就是最典型的例子,它通过改变原子-场耦合强度 产生由正常相 (NP)到超辐射相 (SP)的二阶相变. 该自旋玻色模型描述的是 N个二能级原子系综与 单模量子化玻色场的耦合^[12,13].从 20 世纪 70 年代

* 国家自然科学基金 (批准号: 11772177, 61505100)、山西省科学基金 (批准号: 201701D221001) 和山西省 "1331 工程" 重点学科建 设计划经费.

† 通信作者. E-mail: 317446484@qq.com

© 2019 中国物理学会 Chinese Physical Society

开始, 虚时路径积分方法被用来研究有限温度下 Dicke 模型在热力学极限 $N \to \infty$ 和弱耦合下的相 变特性^[14].

目前,机械振子与光腔耦合系统已被大量研 究^[15-17]. 在 $N \to \infty$ 极限下,利用平均场近似方法 (如: Holstein-Primakoff 变换方法、自旋相干态变 分方法) 对零温下光学机械腔中囚禁的 BEC 的基 态特性和相关量子相变 (QPT) 已进行了广泛的研 究^[15]. 现在我们采用虚时路径积分的方法来研究 囚禁 BEC 的腔机械系统在有限温度下的相变和相 关的热力学性质. 模型是光机械腔中囚禁 BEC, 哈 密顿量中引入了原子-光非线性相互作用. 用虚时 路径积分方法可以方便地讨论热涨落起主导作用 下,温度对系统相变的影响,而平均场近似下只能 讨论零温极限下的量子相变.本文用该虚时路径积 分方法推导出系统的热力学平衡方程、原子布居 数、平均光子数和平均能量、自由能的表达式,并 计算出熵的表达式,并将得到的相图与零温下的量 子相变等特性进行比较,进而探讨温度对光机械系 统的影响[15,18]. 我们发现: 原子-光非线性相互作用 会使相变点移动, SP 区域范围改变; 当原子-光非 线性相互作用绝对值达到一定值时, SP 区域会完 全消失;强的非线性声子-光子耦合强度可以出现 超辐射不稳定态 (NUS).

2 模型以及哈密顿量

根据文献 [19] 中提出的实验装置, 我们考虑如 图 1 的冷原子系统:四能级原子组被囚禁在频率为 ω_c的高精度光腔内, 且一束频率为ω_p的横向泵浦 光被垂直注入光腔; 通过辐射压力将高质量的机械 振荡器与腔模进行耦合. 超冷原子将泵浦光相干地 散射到与位置相关的腔模中. 通过泵浦激光器和腔 模的光散射两种平衡拉曼通道, 在色散极限下, 原 子的两个激发态能级可以绝热地消除进而来获得 一个有效的二能级原子^[2,20]. 相应的二次量子化的 哈密顿量表示为 (考虑自然单位 ħ = 1)

$$H = H_{\text{Dicke}} + \frac{U}{2N} a^{\dagger} a S_z + \omega_{\text{b}} b^{\dagger} b + \frac{\xi}{\sqrt{N}} (b^{\dagger} + b) a^{\dagger} a, \quad (1)$$

其中

$$H_{\text{Dicke}} = \omega a^{\dagger} a + \frac{\omega_0}{2} S_z + \frac{g}{2\sqrt{N}} (a^{\dagger} + a) (S_+ + S_-).$$
(2)
公式 (2) 中的哈密顿量是标准 Dicke 模型的

图 1 将超冷原子囚禁在超精细的光腔内,在 z方向注入 一束泵浦光,并且在 x方向外加一个与光腔发生相互作用 的纳米机械振子

Fig. 1. Experimental setup for an ultra-cold atoms trapped inside a high-finesse optical cavity driven by a pump laser in the z direction. While, a nanomechanical oscillator interacts with the optical cavity in the x direction.

哈密顿量^[21,22],其中a[†](a)是有效光场的产生(湮 $(\overline{\mathcal{W}})$ 算符, $b^{\dagger}(b)$ 是声子的产生 (湮灭) 算符, ω_0 是原 子的有效频率, $\omega_0 = \omega_a - \omega_p$ 是有效的原子频率, ω_a 是原子的共振频率, $\omega = \Delta_c + 5U/2$ 是有效的腔 频率,其中 $\Delta_{c} = \omega_{c} - \omega_{p}$ 是光腔的频率 ω_{c} 和泵浦激 光频率 ω_n 之间的失谐 ($\Delta_c > 0$ 为红失谐, $\Delta_c < 0$ 为 蓝失谐), U = NU₀/4代表的是原子-光非线性相互 作用,其中 $U_0 = g_0^2(\omega_p - \omega_a), g_0$ 代表的是单个原 子-场耦合强度, g代表原子-场集体耦合强度, N是 原子数目. ω_b 是纳米机械振子的频率, $\xi = \sqrt{N}\xi_0$ 是机械振子产生的声子和腔模产生的光子通过辐射 压产生的非线性相互作用,其中 $\xi_0 = \omega_c / l \sqrt{2M\omega_b}$, *l*是光腔的长度,*M*为纳米机械振子的质量. $S_l = \sum_{i=1}^{N} \sigma_{l,i}(l = x, y, z) \& \mathbb{B} \land \mathbb{F} \not\equiv \mathbb{K} \not\equiv \mathbb{B} \not\equiv \mathbb{K}$ $S_{\pm} = (S_x \pm iS_y)$ 和 S_z 满 足 角 动 量 对 易 关 系 $[S_{\pm}, S_{-}] = 2S_{z} \pi [S_{z}, S_{\pm}] = \pm S_{\pm}$. 值得一提的是: 在哈密顿量中我们忽略了三体相互作用项, 仅考虑 两体 (光子, 声子) 辐射压相互作用 [23-25]. 引入两 组费米算符,定义费米算符的产生和湮灭算符为 $\alpha_i^{\dagger}, \alpha_i$ 和 $\beta_i^{\dagger}, \beta_i$, 且费米算符满足反对易关系. 将赝 自旋算符转换为双模费米子算符 $\sigma_{z,i} \rightarrow \alpha_i^{\dagger} \alpha_i \beta_i^{\dagger}\beta_i, \sigma_{+,i} \to \alpha_i^{\dagger}\beta_i, \sigma_{-,i} \to \beta_i^{\dagger}\alpha_i, 则我们可以得到$ 哈密顿量(1)的费米子算符形式:

$$H_{\rm F} = \left[\omega + \frac{\xi}{\sqrt{N}}(b^{\dagger} + b)\right]a^{\dagger}a + \omega_{\rm b}b^{\dagger}b + \left(\frac{\omega_0}{2} + \frac{U}{2N}a^{\dagger}a\right)\sum_{i=1}^{N}\left(\alpha_i^{\dagger}\alpha_i - \beta_i^{\dagger}\beta_i\right) + \frac{g}{\sqrt{N}}\sum_{i=1}^{N}\left(a^{\dagger} + a\right)\left(\alpha_i^{\dagger}\beta_i + \beta_i^{\dagger}\alpha_i\right).$$
(3)

我们通过配分函数来研究系统的基态特性和 热力学性质,所采用的方法是虚时路径积分法^[26]. 系统的配分函数表示为

 $Z = \operatorname{Tr}(\exp(-\beta H)) = \int [\mathrm{d}\eta] \exp(-\beta H),$

其中 $\beta = 1/(k_{\rm B}T), k_{\rm B}$ 是玻尔兹曼常数, $[d\eta]$ 是积分 度量.

$$Z = \operatorname{Tr}(\exp(-\beta H)) = \int [d\eta] \exp(-\beta H) = \int [d\eta] \exp\left[-\beta \left\{ \left[\omega + \frac{\xi}{\sqrt{N}}(b^{\dagger} + b)\right]a^{\dagger}a + \omega_{b}b^{\dagger}b + \left(\frac{\omega_{0}}{2} + \frac{U}{2N}a^{\dagger}a\right)\sum_{i=1}^{N}\left(\alpha_{i}^{\dagger}\alpha_{i} - \beta_{i}^{\dagger}\beta_{i}\right) + \frac{g}{2\sqrt{N}}\sum_{i=1}^{N}\left(a^{\dagger} + a\right)\left(\alpha_{i}^{\dagger}\beta_{i} + \beta_{i}^{\dagger}\alpha_{i}\right)\right\}\right]$$
$$= \int [d(a^{*}, a, b^{*}, b)] \exp\left\{-\beta \left[\omega_{b}|b|^{2} + \frac{\xi}{\sqrt{N}}b^{*}(a^{*}a) + \frac{\xi}{\sqrt{N}}(a^{*}a)b\right] - \beta \left[\omega a^{*}a + \left(\frac{\omega_{0}}{2} + \frac{U}{2N}a^{*}a\right)\right] \right\}$$
$$\times \sum_{i=1}^{N}\left(\alpha_{i}^{\dagger}\alpha_{i} - \beta_{i}^{\dagger}\beta_{i}\right) + \frac{g}{2\sqrt{N}}\sum_{i=1}^{N}\left(a^{\dagger} + a\right)\left(\alpha_{i}^{\dagger}\beta_{i} + \beta_{i}^{\dagger}\alpha_{i}\right)\right]\right\} = \int [d(a^{*}, a, b^{*}, b)] \exp\left(A + B\right), \quad (5)$$

其中

$$\int \left[\mathsf{d} \left(a^*, a, b^*, b \right) \right] \exp A = \int \left[\mathsf{d} \left(a^*, a, b^*, b \right) \right] \exp \left\{ -\beta \left[\omega_{\mathsf{b}} |b|^2 + \frac{\xi}{\sqrt{N}} b^*(a^*a) + \frac{\xi}{\sqrt{N}} (a^*a) b \right] \right\},\tag{6}$$

$$\int [\mathbf{d}(a^*, a)] \exp B$$

$$= \int [\mathbf{d}(a^*, a)] \exp \left\{ -\beta \left[\omega a^* a + \left(\frac{\omega_0}{2} + \frac{U}{2N} a^* a \right) \sum_{i=1}^N (\alpha_i^\dagger \alpha_i - \beta_i^\dagger \beta_i) + \frac{g}{2\sqrt{N}} \sum_{i=1}^N \left(a^\dagger + a \right) \left(\alpha_i^\dagger \beta_i + \beta_i^\dagger \alpha_i \right) \right] \right\}.$$
(7)

利用高斯积分公式

$$\int [d\eta] \exp(-C|z|^2 + cz^* + zc^*) = C^{-1} \exp\frac{|c|^2}{C}.$$
(8)
$$\Rightarrow C = 1, c = -\frac{\xi\sqrt{\beta}}{\sqrt{N\omega_b}} a^* a, z = \sqrt{\beta\omega_b} b, \quad M \overrightarrow{O} \overrightarrow{P} \overrightarrow{R} \overrightarrow{D} \overrightarrow{D} \overrightarrow{C}.$$

$$\int [d(a^*, a, b^*, b)] \exp A$$

$$= \int \left[\mathbf{d}(a^*, a) \right] \left[\mathbf{d}(b^*, b) \right] \exp \left[-\left(\sqrt{\beta\omega_b}\right)^2 |b|^2 - \frac{\xi\sqrt{\beta}}{\sqrt{N\omega_b}} b^* \sqrt{\beta\omega_b} \left(a^*a\right) - \frac{\xi\sqrt{\beta}}{\sqrt{N\omega_b}} \left(a^*a\right) b\sqrt{\beta\omega_b} \right]$$
$$= \int \left[\mathbf{d}(a^*, a) \right] \left[\exp\left(\frac{\beta\xi^2 (a^*a)^2}{N\omega_b}\right) \right], \tag{9}$$

可见,利用积分公式将配分函数中的机械振子b*(b)变量去掉了,只剩下变量a*(a).将(9)式代入(5)式,则 配分函数可以化简为

$$Z = \int \left\{ \mathrm{d}\eta(a,a^*) \exp\left[-\beta \left(\omega a^* a - \frac{\xi^2 (a^* a)^2}{N \omega_{\mathrm{b}}^2 \beta} + \left(\frac{\omega_0}{2} + \frac{U}{2N} a^\dagger a \right) \sum_{i=1}^N (\alpha_i^\dagger \alpha_i - \beta_i^\dagger \beta_i) + \frac{g}{\sqrt{N}} \sum_{i=1}^N (a^\dagger + a) (\alpha_i^\dagger \beta_i + \beta_i^\dagger \alpha_i) \right) \right] \right\}$$
(10)

由路径积分方法求得的配分函数也可表示为

$$Z = \int \left[\mathrm{d}\eta \right] \exp\left(-S \right),\tag{11}$$

则系统的欧几里得作用量可以表示为

$$S = \int_0^\beta \mathrm{d}\tau \left[a^*(\tau) \left(\frac{\partial}{\partial \tau} + \omega \right) a(\tau) + \sum_{i=1}^N \int_0^\beta \Phi_i^\dagger G\left(a(\tau), a^*(\tau) \right) \Phi_i \right],\tag{12}$$

其中
$$\tau = it$$
是虚时, $\Phi_i \Phi_i^{\dagger}, G(a(\tau), a^*(\tau))$ 具体为以下形式: $\Phi_i = \begin{pmatrix} \alpha_i(\tau) \\ \beta_i(\tau) \end{pmatrix}, \Phi_i^{\dagger} = \begin{pmatrix} \beta_i^*(\tau) & \alpha_i^*(\tau) \end{pmatrix},$
$$G(a(\tau), a^*(\tau)) = \begin{pmatrix} \frac{\partial}{\partial \tau} + \frac{\omega_0}{2} + \frac{U}{2N} a^*(\tau) a(\tau) & \frac{g}{\sqrt{N}} (a(\tau) + a^*(\tau)) \\ \frac{g}{\sqrt{N}} (a(\tau) + a^*(\tau)) & \frac{\partial}{\partial \tau} - \begin{pmatrix} \frac{\omega_0}{2} + \frac{U}{2N} a^*(\tau) a(\tau) \end{pmatrix} \end{pmatrix}.$$

利用凝聚态场论的方法,我们先积分掉费米子部分,则我们得到一个有效的作用量:

$$S_{\text{eff}}\left(a(\tau), a^{*}(\tau)\right) = int_{0}^{\beta} \mathrm{d}\tau \left[a^{*}(\tau)\left(\frac{\partial}{\partial\tau} + \omega\right)a(\tau) - \frac{\xi^{2}\left(a^{*}(\tau)a(\tau)\right)^{2}}{N\omega_{\text{b}}} - Ntr\ln G\left(a(\tau), a^{*}(\tau)\right)\right].$$
(13)

然后对有效作用量 (13) 进行变分, 即 $\frac{\delta S_{\text{eff}}(a(\tau), a^*(\tau))}{\delta(a(\tau))} = \frac{\delta S_{\text{eff}}(a(\tau), a^*(\tau))}{\delta(a^*(\tau))} = 0$, 则我们最终可以得到热力 学平衡方程

$$\left(\omega + \frac{\partial}{\partial \tau}\right)a(\tau) - \frac{2\xi^2 a^*(\tau)a(\tau)}{N\omega_{\rm b}}a(\tau) = -\frac{\left(\frac{\omega_0}{2} + \frac{U}{2N}a^*(\tau)a(\tau)\right)Ua(\tau) + 2g^2\left(a(\tau) + a^*(\tau)\right)}{\frac{\partial^2}{\partial \tau^2} - \left[\left(\frac{\omega_0}{2} + \frac{U}{2N}a^*(\tau)a(\tau)\right)^2 + \frac{4g^2}{N}a^*(\tau)a(\tau)\right]}.$$
 (14)

接下来,我们分别对玻色场 $a(\tau)$ 和费米场 Φ_i 进行傅里叶变换,即

$$a(\tau) = \beta^{-1/2} \sum_{f} a(f) e^{-if_n \tau}, \ \Phi_i(\tau) = \beta^{-1/2} \sum_{g} \Phi_i(p) e^{-ig_n \tau}.$$
 (15)

由于玻色场满足周期边界条件即 $f_n = 2\pi n/\beta$;费米场满足反周期边界条件 $g_n = (2n+1)\pi/\beta$,其中n为整数, $f_n 和 g_n 分别为玻色场和费米场的$ Matsubara 频率.采用定态位相微扰方法,所有温度对稳态的影响可以忽略不计,即a与虚时 τ 无关,则上式可以化简为

$$\left[\omega - \frac{2\xi^2 a^* a}{N\omega_{\rm b}}\right]a = -\frac{1}{\beta} \sum_n \frac{\left(\frac{\omega_0}{2} + \frac{U}{2N} a^* a\right) Ua + 2g^2(a^* + a)}{\left(-\mathrm{i}g_n\right)^2 - \left[\left(\frac{\omega_0}{2} + \frac{U}{2N} a^* a\right)^2 + 4g^2 \frac{a^* a}{N}\right]}.$$
(16)

上式关于 g_n 求和, 也可以转化为复平面的环路积分. 得到的稳态解满足的热力学平衡方程为

$$\left[\omega - \frac{2\xi^2 a^* a}{N\omega_{\rm b}}\right] a = \frac{8g^2 + \left(\omega_0 + \frac{U}{N}a^* a\right)U}{2\zeta} \tanh\left[\frac{\beta}{4}\zeta\right] a,$$
(17)

其中 $\zeta = \sqrt{\left(\omega_0 + U \frac{a^* a}{N}\right)^2 + 16g^2 \frac{a^* a}{N}}$. 上式方程有 一个平庸解 $a^*(\tau) = a(\tau) = 0$, 与之对应的光子数 为零, 系统处于正常相; 如果存在非零解, 则满足 的方程为

$$\omega - \frac{2\xi^2 n_{\rm p}}{\omega_{\rm b}} = \frac{8g^2 + (\omega_0 + Un_{\rm p})U}{2\varsigma} \tanh\left[\frac{\beta}{4}\varsigma\right], \quad (18)$$

其中 $n_{\rm p} = \langle a^* a \rangle / N, \ \varsigma = \sqrt{(\omega_0 + U n_{\rm p})^2 + 16 g^2 n_{\rm p}},$ 对应的光子数大于零,系统处于超辐射相. 从方程 (18) 我们可以得到温度为T的相变点为 $g_c(T) = \sqrt{(2\omega_0\omega/\tanh(\beta\omega_0/4) - U\omega_0)/8}$,同时对应的原子 布居数为

$$\Delta n_{\rm a} = \frac{\langle S_z \rangle}{2N} = -\frac{(\omega_0 + Un_{\rm p})(\omega - 2\xi^2 n_{\rm p}/\omega_{\rm b})}{8g^2 + (\omega_0 + Un_{\rm p})U}.$$
 (19)

3 温度对二阶相变点参数的影响

3.1 Dicke 相变^[26] 和平均光子数

根据方程 (18), 图 2 给出了平均光子数随原 子-场集体耦合强度变化的示意图. 给定的参数是 $\omega_0 = 0.047 \,(\text{MHz}), \, \omega = \omega_b = 20 \,(\text{MHz}).$

图 2 描述的是平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原子-场的集体耦合强度 g 变化的示意图.图 2(a) 是在原

子-光非线性相互作用U = 0 (MHz)和光子-声子相 互作用 $\xi = 0$ (MHz)时,温度影响下平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原子-场的集体耦合强度g变化的示意 图,温度分别为T = 0 (nK) (黑线)、T = 50 (nK) (红 线)和T = 140 (nK) (蓝线).在温度为T = 0 (nK) (黑线)的情况下系统退回到标准 Dicke 模型,当原 子-场集体耦合强度g增加到临界耦合强度 $g_c = 0.5$ 时,系统会发生从 NP 到 SP 的二阶 Dicke 量子相 变.从图 2(a)可以看出:温度的升高会使 NP 到 SP 的二阶相变发生推迟,相变点 g_c 向原子-场耦合 强度增强的方向移动;当原子-场耦合强度g增大到 一定值时,有限温度下的平均光子数将会与零温时 重合. 图 2(b) 给出有限温度 T = 140 (nK) 和声子-光 子的耦合强度 $\xi = 0$ (MHz) (机械振子影响不存 在) 时,在不同的原子-光场非线性相互作用影响 (U = 0 (MHz) (黑线)、U = -20 (MHz) (红线)和 U = -30 (nK) (蓝线))下平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原 子-场集体耦合强度 g 变化的示意图.我们发现:原 子-光场非线性相互作用会使 NP 到 SP 发生二阶 相变的相变点移动.同时当原子-光场非线性相互 作用较大时,当原子-场集体耦合强度 g 增加到一定 值时,平均光子数会显著增强 (U = -30 (nK) (蓝 线)).对照图 2(a) 和图 2(b)中的黑线 (零温和有限 温度),我们发现:有限温度会导致 NP 到 SP 的二 阶相变向原子-场耦合强度强的方向移动.

图 2 平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原子-场的集体耦合强度 g 变化的示意图

Fig. 2. The average photon number $\langle a^{\dagger}a \rangle / N$ as a function of the atom-field coupling strength g.

193701-5

图 2(c) 是在原子-光场的非线性相互作用不存 在、且给定有限温度 T = 140 (nK)时,不同的声子-光子非线性相互作用影响下平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原子-场集体耦合强度 g 变化的示意图,分别给出 了 $\xi = 0$ (MHz)(黑线)、 $\xi = 30$ (MHz)(红线)和 $\xi = 50$ (MHz)(蓝线) 三种情况. 该图主要体现:给 定温度下,机械振子对 Dicke 相变的影响. 我们发 现声子-光子耦合强度不会影响相变点,对 NP 不 会产生影响,但会使平均光子数增大,即增强宏观 集体激发,并且除了会发生从 NP 到 SP 的变化外, 还会在全区域出现 NUS,即图中的彩色点划线.

 ξ = 50 (MHz) (蓝线) 下平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原 子-场集体耦合强度 g变化的示意图. 与图 2(c) 比 较, 正的原子-光场非线性相互作用会导致相变点 向左移动, 同时也出现了 NUS. 图中的 NUS 对应 的是不稳定的非零光子数解, 所谓的不稳指的是对 应的能量二阶导数大于零.

3.2 有限温度相图

图 3 给出不同的原子-光场非线性相互作用影 响下,平均光子数随原子-场集体耦合强度和温度 变化的相图 (g - T).图 3(c)为有限温度影响下 Dicke 模型的相图,温度会导致标准 Dicke 模型 (T = 0 (nK))的二阶相变的相变点向原子-场耦合 强度增大方向平移.将图 3(a)和图 3(d)与图 3(c) 进行比较,我们发现:负的原子-光非线性相互作 用 ((a)U = -30 (MHz))会使相变点右移,SP 区域 减小;而正的原子-光非线性相互作用 ((d) U = 30 (MHz))会使相变点左移,SP 区域有所增 大.当原子-光非线性相互作用绝对值达到一定值 时 ((b)U = -50 (MHz)和 (e)U = 50 (MHz)),SP 区 域会完全消失,被 NUS 代替,也就是由 NP 到 SP 二阶相变不再存在,光子数没有稳定激发解.虽

图 3 原子-光场非线性相互作用影响下,平均光子数随原子-场集体耦合强度和温度变化的相图 (g - T),其中声子-光子耦合强 度 $\xi = 0$ (MHz)

Fig. 3. The average photon number's phase diagram of the atom-field collective coupling strength and the temperature for different atom-light nonlinear interaction strength with the disappeared phonon-photon coupling constant $\xi = 0$ (MHz).

然白色区域有非零光子数解,但却不是稳定的超辐射态.

3.3 机械振子影响下的相图

图 4 中 (a1)—(c1) 是零温 (T = 0 (nK))时, 不同的原子-光非线性相互作用影响下,平均光子 数关于原子-场集体耦合强度和声子-光子非线性相 互作用 ($g - \xi$ 平面)的相图. 对比图 4(a1)和图 4(b1) 或图 4(c1)和图 4(b1),我们发现:原子-光非线性 相互作用为负值 (U = -30 (MHz))时,相变点右 移, NP 到 SP 的二阶相变推迟,且 SP 减小;反之, 原子-光非线性相互作用为正值 (U = 30 (MHz)) 时,相变点左移,NP 到 SP 的二阶相变提前,且 SP 区域增大.同时我们发现:当强的声子-光子非 线性相互作用存在时,除了会出现由 NP 到 SP 的 二阶相变外,还会出现 NUS 白色区域,此区域没 有稳定的光子数解.同时我们发现弱的原子-光非 线性相互作用会使 NUS 区域明显增大.图 4(a2)— (c2) 是有限温度 (T = 140 (nK))下,在不同的原 子-光非线性相互作用影响下,平均光子数关于原 子-场集体耦合强度和声子-光子非线性相互作用 (($g - \xi$)平面)的相图.将图 4(1) 与图 4(2) 进行对

图 4 原子-光非线性相互作用影响下,平均光子数关于原子-场耦合强度和声子-光子非线性相互作用强度 $(g - \xi)$ 的相图,其中 有限温度分别为T = 0 (nK) (1) 和T = 140 (nK) (2)

Fig. 4. The phase diagram about the average photon number of atom-field collective coupling strength and the nonlinear photonphonon interaction for different atoms-light nonlinear interaction strength with different finite temperature T = 0 (nK) (1) and T = 140 (nK)(2). 比可以发现:零温时的 SP 区域比有限温度的区域 要大,这说明温度会使 NP 到 SP 的二阶相变发生 推迟,相变点右移.

3.4 温度和非线性原子-光相互作用影响的 相变特性

通过对平均光子数进行数值求解,图 5 给出 了 (U - T) 平面的相图.对于给定的原子-场集体 耦合强度 g = 0.7 (MHz) (a) 和 g = 0.75 (MHz) (b) 以 及非线性声子-光子相互作用 $\xi = 50$ (MHz)时,我 们比较不同参数下平均光子数随原子-光非线性相 互作用U和温度T变化的相图.我们发现:当原子-场集体耦合强度较大 (g = 0.75 (MHz))时,图中的 NUS 会增加,此区域内没有稳定的非零光子数解. 将图 5 与图 4 相比较,我们发现除了有 NP 和 SP, 在 NP 和 SP 区域还有一个不稳定的非零解,从图 5 可以明显看到.

如图 5 黑线 T = 80 (nK) 所示,图 6 给出了温 度为 80(nK) 时,平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原子与光 子的非线性相互作用 U 变化的示意图.其他给定的 参数是:非线性声子-光子相互作用 $\xi = 50$ (MHz) 和原子-场耦合强度 g = 0.7 (MHz) (a),0.75 (MHz) (b).随着非线性原子-光相互作用 U 的变化,系统 出现了丰富的平均光子数的解.从图 6(a)可以发 现:除了出现正常相 NP 和超辐射相 SP,还出现一 种新的超辐射不稳定态 NUS.该 NUS 态随能量变 化的二阶导数是小于零的,为能量极大值,固不稳 定.图 6(b) 中 当原子-场耦合强度变大为 g =0.75 (MHz)且非线性U达到一定值时还出现了光子 数的无解区,对应图 5 中空白部分,此时没有稳定 的光子数解.

图 5 在不同的原子-场集体耦合强度下,平均光子数关于原子-光非线性相互作用和温度(U-T)的相图,其中声子-光子非线性相互作用ξ = 50 (MHz)

Fig. 5. The phase diagram about the average photon number of the atoms-light nonlinear interaction and temperature for different atoms-field collective coupling strength, where the nonlinear photon-phonon interaction $\xi = 50$ (MHz).

图 6 平均光子数 $\langle a^{\dagger}a \rangle / N$ 随原子-光非线性相互作用 U 变化的示意图, 给定的参数是: 原子-场耦合强度. (a) g = 0.7 (MHz)和 (b) g = 0.75 (MHz), 温度 T = 80 (nK)和光子-声子非线性耦合强度 $\xi = 50$ (MHz)

Fig. 6. Variations of the average photon number $\langle a^{\dagger}a \rangle / N$ with respect to the atom-light nonlinear interaction U. The given parameters are the atom-field coupling strength (a) g = 0.7 (MHz) and (b) g = 0.75 (MHz), the temperature T = 80 (nK) and the photon-phonon nonlinear coupling strength $\xi = 50$ (MHz).

4 热力学性质

根据系统的配分函数,我们得到平均能量的定 义式

$$E_{\rm g} = \frac{\langle H \rangle}{N} = -\frac{1}{N} \frac{\partial \ln Z}{\partial \beta}, \qquad (20)$$

通过计算可以得到有限温度下 NP 和 SP 的平均能 量为

$$E_{\rm g} = \begin{cases} E_{\rm NP} = -\frac{\omega_0}{2} \tanh\left(\frac{\beta\omega_0}{4}\right), & g < g_{\rm c}, \\ \\ E_{\rm SP} = \omega n_{\rm p} - \frac{\xi^2 n_{\rm p}^2}{\omega_{\rm b}} - \frac{\varsigma}{2} \tanh\left(\frac{\beta\varsigma}{4}\right), & g > g_{\rm c}, \end{cases}$$
(21)

且发现在T = 0(nK)时,正常相和超辐射相的平均能量为

$$E_{\rm g}(T=0) = \begin{cases} E_{\rm NP} = -\frac{\omega_0}{2}, & g < g_{\rm c}, \\ \\ E_{\rm SP} = \omega n_{\rm p} - \frac{\xi^2 n_{\rm p}^2}{\omega_{\rm b}} - \frac{\varsigma}{2}, & g > g_{\rm c}, \end{cases}$$
(22)

依据 (21) 式, 图 7 刻画了平均能量随原子-场耦合 强度的变化.图 7(a) 是给定有限温度T = 140 (nK) 和原子-光非线性相互作用U = -30 (MHz), 在不同 声子-光子耦合强度g变化的示意图.从图可见:当声子-光子耦合强度g变化的示意图.从图可见:当声子-光子耦合强度 $\xi = 0$ (MHz)(黑线)和 $\xi = 30$ (MHz) (红线)时,随着原子-场耦合强度的增大,平均能量 的曲线基本重合,说明较小的声子-光子耦合强度 作用不会影响平均能量;但是当声子-光子耦合强 度达到 $\xi = 50$ (MHz)(蓝线)时,平均能量在原子-场耦合强度增大时会出现偏差.可见,无论声子-光 子耦合强度和原子-场耦合强度如何变化都不会影响 NP 的平均能量,而在原子-场强耦合下 SP 区有不明显的影响.图 7(b) 是给定声子-光子耦合强度 $\xi = 50 (MHz)$ 和原子-光非线性相互作用U = -30 (MHz)时,平均能量 E_g 在不同的温度影响下随原子-场集体耦合强度g变化的示意图.我们发现:当有限温度T = 140 (nK)(蓝线)时,NP 的平均能要高于较低的有限温度T = 0 (nK)(黑线)和T = 50 (nK)(红线)时的平均能量。同时当原子-场集体耦合强度增大到一定值时,有限温度下的平均能量都会和零温时的平均能量趋近于一致.总之,温度在 NP 区对能量影响明显,SP 区也有显著影响;但当原子-场耦合达到较大值时,影响几乎为零.

在热力学极限 $N \to \infty$ 下, 每个原子的自由能 定义为 $F = -\frac{1}{N\beta} \ln Z$, 由此我们计算得到有限温 度下 NP 和 SP 的自由能:

$$\begin{cases} F_{\rm NP} = -\frac{2}{\beta} \ln \left[2 \cosh \left(\frac{\beta \omega_0}{4} \right) \right], & g < g_{\rm c}, \\ F_{\rm SP} = \omega n_{\rm p} - \frac{\xi^2 n_{\rm p}^2}{\omega_{\rm b}} - \frac{2}{\beta} \ln \left[\cosh \left(\frac{\beta \varsigma}{4} \right) \right], & g > g_{\rm c}. \end{cases}$$

$$\tag{23}$$

从平均能量和自由能的表达式我们可以看出: 在 NP 时,平均能和自由能是常数.根据表达式 S = E - F/T还可以求得熵的表达式为

$$\begin{cases} S_{\rm NP} = 2\ln\left[2\cosh\left(\frac{\beta\omega_0}{4}\right)\right] - \frac{\beta\omega_0}{2}\tanh\left(\frac{\beta\omega_0}{4}\right), \\ g < g_{\rm c}, \\ S_{\rm SP} = 2\ln\left[2\cosh\left(\frac{\beta\varsigma}{4}\right)\right] - \frac{\beta\varsigma}{2}\tanh\left(\frac{\beta\varsigma}{4}\right), \\ g > g_{\rm c}. \end{cases}$$
(24)

Fig. 7. The average energy $E_{\rm g}$ as a function of the atom-field collective coupling strength.

根据 (24) 式, 图 8 给出了熵随原子-场耦合强 度的变化.

图 8 分别给出了蓝失谐 ((a) $\Delta_{c} = -20$ (MHz))、 共振 ((b) $\Delta = 0$ (MHz))和红失谐 ((c) $\Delta_{c} = 20$ (MHz)) 时,有限温度 T = 140 (nK) (红线)和 T = 100 (nK) (蓝线)下熵随原子-场集体耦合强度变化示意图. 其他给定参数是 $\xi = 50$ (MHz), $\omega_{0} = 0.047$ (MHz), U = 20 (MHz).我们发现:无论 NP 还是 SP 时, 有限温度高 (T = 140 (nK))时对应的熵值都要比 温度低 (T = 100 (nK))时高,并且在高的有限温度 下相变会发生推迟.同时随着原子-场耦合强度增 大,不同的有限温度下熵最后都会趋近于零,这也 说明强集体耦合激发态是高度有序的,在我们考虑

图 8 熵 S 随原子-场集体耦合强度 g 的变化

Fig. 8. Entropy S as a function of the atom-field coupling strength $g\,.$

的温度范围内不受热涨落所影响,但是从图 8(c) 可看出,蓝失谐下熵变趋于零会发生推迟.

5 结 论

我们利用虚时路径积分方法讨论了含有原子-光非线性相互作用的 BEC-腔光机械系统在有限温 度下的相变和相关的热力学性质. 通过虚时路径积 分方法计算出配分函数,从而推导出系统的热力学 平衡方程和原子布居数表达式. 根据热力学平衡方 程,我们对平均光子数进行数值求解并且进行稳定 性分析,最终发现:随着不同非线性耦合强度的变 化,系统除了会发生由 NP 到 SP 的二阶相变外, 还会出现无稳定光子数解的 NUS. 同时,本文也通 过计算热力学熵讨论了系统的热力学性质,发现: 温度越高, 熵越大; NP 时熵为常数, 相变点之后随 着原子-场耦合强度的增加, 熵迅速减为零. 我们还 发现:负的原子-光非线性相互作用会使二阶相变 点向原子-场耦合强度g增大的方向移动,SP区域 减小;而正的原子-光非线性相互作用会使二阶相 变点向原子-场耦合强度g减小的方向移动, SP 域 增大些. 当原子-光非线性相互作用绝对值达到一 定值时, SP 区域会完全消失, 也就是由 NP 到 SP 的二阶量子相变不再存在, 光子数没有稳定激 发解.虽然 NUS 有非零光子数解,但却不是稳定 的超辐射态.强的非线性声子-光子耦合强度可诱 导 NUS.

参考文献

- Braginsky V B, Vorontsov Y I, Thorne K S 1980 Science 209 547
- [2] Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 53623
- [3] Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 *Acta Phys. Sin.* 64 164211 (in Chinese) [陈雪, 刘晓威, 袁春 华, 张卫平 2015 物理学报 64 164211]
- [4] Aspelmeyer M, Kippenberg T J, Marquardt F 2013 Rev. Mod. Phys. 86 1391
- [5] Mancini S, Tombesi P 1994 Phys. Rev. A 49 4055
- [6] Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A, Mackowski J M, Michel C, Pinard L, Francais O, Rousseau L 2006 Phys. Rev. Lett. 97 133601
- [7] Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550
- [8] Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301
- [9] Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553
- [10] Padhi B, Ghosh S 2013 Phys. Rev. Lett. 111 043603
- [11] Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev.

Mod. Phys. 69 315

- [12] Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701
 (in Chinese) [黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701]
- [13] Emary C, Brandes T 2003 *Phys. Rev. E* 67 066203
- [14]~ Popov V N, Fedotov S A 1982 Theor. Math. Phys. $\mathbf{51}$ 363
- [15] Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820
- [16] Sun Q, Hu X H, Liu W M, Xie X C, Ji A C 2011 Phys. Rev. A 84 023822
- [17] Sun Q, Hu X H, Ji A C, Liu W M 2011 Phys. Rev. A 83 043606
- [18] Wang Z M, Lian J L, Liang J Q, Yu Y, Liu W M 2016 Phys. Rev. A 93 033630

- [19] Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 1041
- [20] Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831
- [21] Hioe F T 1973 Phys. Rev. A 8 1440
- [22] Santos J P, Furuya K, Semião F L 2010 Phys. Rev. A 82 063801
- [23] Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724
- [24] Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818
- [25] Zhang Y W, Lian J L, Liang J Q, Chen G, Zhang C, Jia S T 2012 Phys. Rev. A 87 811
- [26] Popov V N 1981 Zap. Nauchn. Sem. LOMI 101 128

Phase transition and thermodynamic properties of N twolevel atoms in an optomechanical cavity at finite temperature^{*}

Liu Ni[†] Huang Shan Li Jun-Qi Liang Jiu-Qing

(State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

Theoretical Physics, Shanxi University, Taiyuan 030006, China)

(Received 12 March 2019; revised manuscript received 6 August 2019)

Abstract

Optomechanical cavity is a powerful connection between a nanomechanical oscillator and a quantized electromagnetic field. In this system, a novel photon-phonon nonlinear interaction arising from the nanomechanical oscillation is produced through the radiation pressure. Now this nonlinear photon-phonon interaction has become an important resource for implementing high-precision measurements and processing quantum information. Motivated by T. Esslinger group's experiment, it is very meaningful to explore the exotic quantum phenomena when a ultra-cold BEC is trapped in an optomechanical cavity. In this paper, we mainly investigate phase transition and the finite-temperature thermodynamic properties of a Bose-Einstein condensate in an optomechanical cavity. It's worth mentioning that at zero temperature many different mean-field approximate methods have been used to analyze the ground state properties of a Bose-Einstein condensate in an optomechanical cavity. Two common methods are Holstein-Primakoff transformation and spin coherent state variation. In this paper, an interesting imaginary-time path integral approach has been introduced to study finite temperature thermodynamic properties and phase transition of a Bose-Einstein condensate in an optomechanical cavity. First, we obtained system's partition function by taking imaginary-time path integration. Meanwhile, an effective action has been obtained by means of this method, which is the basic of the variation to get the numerical solution of photon number and the expression of the atomic number. At zero temperature, these results are consistent with what we have obtained by Holstein-Primakoff transformation or spin coherent state variational method. By adjusting the atom-field coupling strength and other parameters the second-order phase transition from the normal phase to the superradiant phase has been revealed. Meanwhile, a new unstable superradiant state was also found. And we found that in addition to the normal phase and superradiation phase, there exists an un-solution region of the mean photon number. Meanwhile, we find that the nonlinear photon-phonon interaction does not affect the normal phase. However, in the superradiant phase, the nonlinear photon-phonon interaction can enhance the macroscopic collective excitations. At the same time, the thermodynamic properties of the system are also discussed. According to the obtained distribution function, we can derive the analytical expression of the average energy and the free energy. Furthermore, the expression of entropy at finite temperature can also be obtained. we find the nonlinear photon-phonon interaction does not affect the average energy in the normal phase, but the average energy in the superradiant phase can deeply deviate in the large nonlinear photon-phonon interaction. It's worth mentioning that the mean photon number and average energy in the finite-temperature tend to be consistent with the case in absolute zero temperature in the strong coupling region, while the entropy in the superradiant phase is rapidly reduced to zero as the atomfield coupling strength increases. In other words, strongly coupled collective excited states are highly ordered and are not affected by thermal fluctuations in the temperature range we are considering. The thermodynamic properties, such as the entropy and corresponding specific heat, characterize the Dicke phase transition.

Keywords: quantum phase transition, imaginary-time path integral, superradiant phase, nonlinear photonphonon interaction

PACS: 37.30.+i, 42.50.Pq

DOI: 10.7498/aps.68.20190347

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11772177, 61505100), the Natural Science Foundation of Shanxi Province, China (Grant No. 201701D221001), and the Fund for Shanxi "1331 Project" Key Subjects, China.

[†] Corresponding author. E-mail: 317446484@qq.com